Attenuation of junctional adhesion molecule-A is a contributing factor for breast cancer cell invasion.
نویسندگان
چکیده
The metastatic potential of cancer cells is directly attributed to their ability to invade through the extracellular matrix. The mechanisms regulating this cellular invasiveness are poorly understood. Here, we show that junctional adhesion molecule A (JAM-A), a tight junction protein, is a key negative regulator of cell migration and invasion. JAM-A is robustly expressed in normal human mammary epithelium, and its expression is down-regulated in metastatic breast cancer tumors. In breast cancer cell lines, an inverse relationship between JAM-A expression and the ability of these cells to migrate on a collagen matrix was observed, which correlates with the known ability of these cells to metastasize. The T47D and MCF-7 cells, which migrate least, are found to express high levels of JAM-A, whereas the more migratory MDA-MB-468 cells have lower levels of JAM-A on the cell surface. MDA-MB-231 cells, which are highly migratory, express the least amount of JAM-A. Overexpression of JAM-A in MDA-MB-231 cells inhibited both migration and invasion through collagen gels. Furthermore, knockdown of JAM-A using short interfering RNAs enhanced the invasiveness of MDA-MB-231 cells as well as T47D cells. The ability of JAM-A to attenuate cell invasion correlated with the formation of increased numbers of focal adhesions and the formation of functional tight junctions. These results show for the first time that an immunoglobulin superfamily cell adhesion protein expressed at tight junctions could serve as a key negative regulator of breast cancer cell invasion and possibly metastasis. Furthermore, loss of JAM-A could be used as a biomarker for aggressive breast cancer.
منابع مشابه
Contributing Factor for Breast Cancer Cell Invasion Attenuation of Junctional Adhesion Molecule-A Is a Updated Version
The metastatic potential of cancer cells is directly attributed to their ability to invade through the extracellular matrix. The mechanisms regulating this cellular invasiveness are poorly understood. Here, we show that junctional adhesion molecule A (JAM-A), a tight junction protein, is a key negative regulator of cell migration and invasion. JAM-A is robustly expressed in normal human mammary...
متن کاملMolecular Docking of Curcumin With Breast Cancer Cell Line Proteins
Background: Breast cancer is known as the most widely recognized dangerous tumors; therefore, the most common reason for mortality among all instances of harmful neoplastic illness in females. This is because the lack of specific signs and symptoms at the early stage and at the aggressive nature. Currently, breast cancer treatment such as chemotherapy, surgery and radiotherapy has not been effe...
متن کاملGene Expression Changes in Pomegranate Peel Extract-Treated Triple-Negative Breast Cancer Cells
Background: Triple-negative breast cancer (TNBC) is treated with highly aggressive non-targeted chemotherapies. Safer and more effective therapeutic approaches than those currently in use are needed. Natural pomegranate peel extract (PPE) has recently been found to inhibit breast cancer progression; however, its mechanisms of action remain unclear. We hypothesized that transcriptional chan...
متن کاملFunctions of novel Junctional Adhesion Molecule-A (JAM-A) inhibitor in breast cancer cells
Background Each year breast cancer is diagnosed in approximately 1 million women worldwide [1]. Our lab has previously linked Junctional Adhesion Molecule A (JAM-A) gene and protein over-expression in breast tumours with an increased risk of metastasis [2,3]. JAM-A loss or inhibition has also been shown to inhibit cell migration and invasion [2], while increasing apoptosis possibly as a result ...
متن کاملCLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation
CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong intera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 68 7 شماره
صفحات -
تاریخ انتشار 2008